• 设函数f(x)的定义域为R,当x<0时,f(x)>1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y)(Ⅰ)求f(0),判断并证明函数f(x)的单调性;(Ⅱ)数列{an}满足a1=f(0),且f(an+1)=1f(-2-an)(n∈N*)①求{an}通项公式.②当a>1时,不等式1an+1+1an+2+…+1a2n>1235(loga+1x-logax+1)对不小于2的正整数恒成立,求x的取值范围.试题及答案-单选题-云返教育

    • 试题详情

      设函数f(x)的定义域为R,当x<0时,f(x)>1,且对任意的实数x,y∈R,有
      f(x+y)=f(x)f(y)
      (Ⅰ)求f(0),判断并证明函数f(x)的单调性;
      (Ⅱ)数列{a
      n}满足a1=f(0),且f(an+1)=
      1
      f(-2-an)
      (n∈N*)
      ①求{a
      n}通项公式.
      ②当a>1时,不等式
      1
      an+1
      +
      1
      an+2
      +…+
      1
      a2n
      12
      35
      (loga+1x-logax+1)对不小于2的正整数恒成立,求x的取值范围.

      试题解答


      见解析
      解:(Ⅰ)x,y∈R,f(x+y)=f(x)?f(y),x<0时,f(x)>1
      令x=-1,y=0则f(-1)=f(-1)f(0)∵f(-1)>1
      ∴f(0)=1
      若x>0,则f(x-x)=f(0)=f(x)f(-x)
      故f(x)=
      1
      f(-x)
      ∈(0,1)
      故x∈Rf(x)>0
      任取x
      1<x2f(x2)=f(x1+x2-x1)=f(x1)f(x2-x1
      ∵x
      2-x1>0∴0<f(x2-x1)<1
      ∴f(x
      2)<f(x1
      故f(x)在R上减函数

      (Ⅱ)①
      a1=f(0)=1,f(an+1)=
      1
      f(-2-an)
      =f(2+an)
      由f(x)单调性知,a
      n+1=an+2故{an}等差数列
      ∴a
      n=2n-1
      bn=
      1
      an+1
      +
      1
      an+2
      ++
      1
      a2n
      ,则bn+1=
      1
      an+2
      +
      1
      an+3
      ++
      1
      a2n+2
      bn+1-bn=
      1
      a2n+1
      +
      1
      a2n+2
      -
      1
      an+1
      =
      1
      4n+1
      +
      1
      4n+3
      -
      1
      2n+1

      =
      1
      (4n+1)(4n+3)(2n+1)
      >0,{bn}是递增数列
      当n≥2时,(b
      n)min=b2=
      1
      a3
      +
      1
      a4
      =
      1
      5
      +
      1
      7
      =
      12
      35

      12
      35
      12
      35
      (loga+1x-logax+1)
      即log
      a+1x-logax+1<1?loga+1x<logax
      而a>1,
      ∴x>1
      故x的取值范围:(1,+∞)
    MBTS ©2010-2016 edu.why8.cn